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The aim of this contribution is to draw attention to the following problems: 
(i) boundary conditions of kinetic models, 
(ii) distortion of kinetic data by cutting-off the peak ends, 

(iii) regression analysis involved in the evaluation of kinetic data. 

For the mathematical treatment of DSC/DTA experimental data the factorized 
kinetic equation 

d~ 
dt - k (T ) ' f (~ )  (1) 

is obviously applied. The temperature term k(T)  bears usually the Arrhenius 
exponential form 

k(T)  = A exp ( -  E/RT) (2) 

The symbols ~, A and E have the usual meaning of the degree of conversion 
(obtained upon integration), pre-exponential factor and activation energy, 
respectively. The rate of  conversion da/dt = a can be simply obtained as a result of 
DTA analysis. The form of the kinetic te rmf(~)  can be dependent on a proposed 
kinetic mechanism but often it is chosen empirically. This term can be written in 
generalized form [1, 2] as follows: 

f (~)  = (1 - ~ ) ~ ' [ -  In (1 - ~)]P (3) 

The most common kinetic models which are special forms of Eq. (3) are shown in 
Table 1. 
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Table ! Kinetic models based on Eq. (3) 

Model Symbol Parameters involved 

Reaction order RO n 

Johnson-Mehl -Avrami-Yerofeev-Kolmogorov  J M A Y K  n = 1, p 

~estfik-Berggren SB n, m 

For the chosen type of kinetic term the activation parameters E and A can be 
determined on the basis of data {~i, ~i, Ti} i = 1 , . . . ,  N by the method of nonlinear 
regression. For the case of integral data (~, Ti) and linear heating 

T = T O + q~t (4) 

the integration of Eq. (1) within the limits (0, ~) and (0, t )  leads to the expression 

i ' de = ~ k(To + d~t)dt (5) 
o f (~)  o 

Here T o and ~b are the starting temperature and rate of heating, respectively. Eq. (5) 
can be formally rewritten in the form 

g(a) = F(t)  (6) 
o r  

e = g-  l[F(t)] (7) 

One of the main problems is that the term F(t) cannot be expressed in closed 
form. For estimation purposes both numerical integration and various approxi- 
mations can be applied. 

Boundary conditions of kinetic terms 

The solution of Eq. (5) in the isothermal case (~b = 0) gives 

g(~) = k(To)t  (8) 

or in inverted form 
e = g -  l[k(To)t] (9) 

It is evident that the following boundary conditions for the g(~) function must be 
fulfilled 

lin g(~) = 0 l img- l ( t )  = 0 (10a) 
~ t ~ 0  t--*0 

limg(e) = ~ lim g - l ( t ) =  1 (10b) 
0 t ~ l  t ~ o O  
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It seems to be surprising that these two elementary classical kinetical conditions are 
not valid for several g(~) functions which are used for kinetic parameter calculation 

from thermoanalytical data. 
For  the simple RO model conditions (10a) and (10b) are fulfilled for n >t 1 only. In 

cases where n < 1, condition (10b) yields 

lim g(~) = n/(1 -n) (11) 
~"*1 

so that the use of  popular models of  shrinking core particles is in question because 
condition (10b) is not valid. However, it can be shown that JMAYK model fulfils 
both conditions mentioned above. For  the third class o f f ( a )  functions called SB the 
g(~) function cannot be obtained in analytical form. It can be proved that the SB 
class of  functions also hardly fulfils the condition (10b). 

The question arises to what extent these incorrectnesses influence the estimation 
of  the activation parameters E and A. 

Distortion of kinetic data by cutting-off the peak ends 

It is known from previous experiences with experimental data treatment that the 
activation parameters E and A are sensitive to the inclusion of  enough points at the 
beginning and end of  peaks, i.e. at the level of the peak baseline representing 

boundary conditions [5]. 
For  many peaks the inflection points are very close to the low values of  a. 

Unsensitive cut-off of the peak tails can considerably decrease the information 
content of experimental data necessary for correct analysis. For  illustration we have 
used the JMAYK model from Table 1 with parameters: p--- 0.5, In A = 23.03 and 
E = 200 kJ" mol -  1. After simulation of  the theoretical a versus Tcurve the random 
centered normally distributed errors were added to a. The standard deviation of  this 

noise was 0.044. 
For  each curve 30 points were created for the preselected temperature interval 

(Train, Tmax) corresponding to the individual position of  the base line (cutting-offthe 

peak ends). 
The activation parameters were estimated from simulated data by the nonlinear 

least squares. Results are summarized in Table 2. 

Table 2 Effect of cutting-off peak ends of the activation parameters 

Train, K Tma ~, K " In (A) E, kJ-mol- 1 

918 1008 23.64 198.53 
958 998 534.40 43.19.70 
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It is evident that the cut-off of the both peak ends, often assumed as negligible 
compared to the rest of peak, may lead to catastrophic results. 

Statistical aspects of nonisothermal kinetics 

The estimation of activation and kinetic parameters from experimental data 
leads to solution of  nonlinear regression problems [6, 7]. The suitable regression 
criterion (loss function) depends on the statistical assumptions about the nature of  
experimental data [8]. Let us concentrate in this section on the integral model (7). 
For  this model the commonly used least squares (LS) criterion has the form 

S(E,  K, n, m, p) = ~ {o~i-g-l[F(ti)]} 2 (12) 
i=l 

The application of  criterion (12) leads from the statistical point of  view to effective 
parameter estimates as long as the additive measurement model 

~i = g -  l[F(ti)] + ~i (13) 

is valid. 
.Necessary conditions for effective estimations by LS are based on two basic 

groups of assumptions about random errors ei. 
I. Errors e~ have identical symmetric unimodal distribution with zero mean 

E(ei) = 0 and constant variance E(e 2) = a 2. 
II. Measurements are mutually independent. Then errors are uncorrelated and 

E(elej) = 0 for i # j .  
These assumptions are only rarely fulfilled for thermoanalytical measurements. 
The additive measurement model (13) has serious restrictions. Due to the nature 

of ei (random errors defined on the whole real line ( - ~ ,  ~ ))  the values ct~ are not 
restricted to physically accepted positive values. The important problem often met 
in practice is that the error variance increases with rising true values of g-l[F(ti)]. 

Errors due to measurement devices have often constant coefficient of  variation 
and therefore the variance tr 2 is a quadratic function of the true values of the 
conversion degree. 

Due to special experimental arrangements (measuring on one system only) the 
errors e i caused by process conditions variation are cumulative [8, 9]. It means that 

i 
el = ~ #j (14) 

j = l  

where #j are independent identically distributed random quantities with constant 
variance. 
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In paper [12] a more general case is solved, where both process (cumulative) 
errors and measuring device errors (with nonconstant variance) are considered. One 
of the frequent alternatives to the additive measurement model is the multiplicative 
measurement model. In this case the relationship 

O~ i = g -  X[F(ti) ] exp (ei) (15) 

is valid. Among the main advantages of the multiplicative model the following can 
be stated [13]: 

- -  measured values ~ are always positive, 
- -  variances of errors are not constant but they represent an increasing function 

of the true values g-  l[F(ti)]. 
Moreover, provided that this measurement model is valid, logarithmic 

transformation (leading obviously to linearization) is correct (see [10]). 
One general method that enables to find suitable measurement model type with 

simultaneous determination of activation and kinetic parameter estimates is 
described in paper [10]. 

The errors e~ have often the short or long tailed distribution. In these cases the L p 
regression criterion leads to maximum likelihood estimators of parameters. The Lp 
criterion is a generalization of LS where in Eq. (12) power two is replaced by power 
p (1 ~<p< oo) [14]. 

It can be concluded that the more realistic assumptions about data and their 
origin lead to the more general estimation problems [8]. 

For effective solution of these problems nonlinear optimization methods can be 
used. It is evident that the incorrect statistical or numerical treatment of nonlinear 
regression leads often to unacceptable parameter estimates. 

An independent problem of this type is the special form of Eq. (7). Due to double 
integration (across time and degree of conversion) it is possible to obtain the good 
approximation of experimental data also by using incorrect kinetic models. It leads 
to a situation where the values of activation energy differ strongly in spite of using 
different relatively good models. 

For demonstrating this phenomena a small simulation study was realized. Data 
{0~i,~,t~} were generated by JMAYK model with parameters p = 0.5, 
In (A)=  23.03 and E = 200 kJ.mo1-1. Values 0q were corrupted by additive 
normal errors with zero mean and variance a 2 = 0.0016. The model defined by Eq. 
(1) and kinetic terms (3) with prechosen constant from Table 1 were used for the 
description of the data. Parameters were estimated by nonlinear LS after logaritmic 
transformation (multiplicative measurement model). The results are summarized in 
Table 3. 

In all cases the simulated data were well approximated by the model. 

s ThermalAnaL 35, 1989 
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Table 3 Results of a small simulation study 

Model T . . . .  K* Tmi n, K* In (A) E, kJ. mol- 1 n m p 

JMA 1008 918 29.65 198.53 1 - -  0.502 
RO 71.40 539.10 1.04 - -  - -  
SB 35.14 243.06 0.44 0.88 - -  

* Initial and final temperature used in the simulation. 

On the basis o f  these limited s imulat ion experiments  it is possible to claim tha t  

(i) it will be difficult to determine correct  est imates o f  act ivat ion parameters  E 
and A f rom one nonisothermal  exper iment  only. This is a direct consequence o f  a 
s t rong multicoll inearity between est imates o f  E and In (A);  

(ii) incorrect  kinetic models  can be successfully used for  modell ing noniso-  
thermal  data,  too. 

The  corresponding estimates o f  act ivat ion paramete rs  are then obviously  far 
f rom the true values. 

Specification of the kinetic term 

As it is shown in Table  3, the correct  specification o f  the kinetic term is very 
impor tan t .  Let  us suppose that  we have exper imental  da ta  {~i, ai, 6} i = 1 , . . . N  
f rom DTA.  Subst i tut ion o f  Eqs (2) and (3) into model  (1) and logar i thmic 
t rans format ion  (correct for  multiplicative measurement  model)  leads to the linear 
regression model  

Yi -- Ao + A lXli  -)- A2x2i + A aX3i q- A4x4i (1 6) 

In this equat ion new variables are 

y i =  lno:i x l i =  1/Ti x21= l n ( 1 - ~ i )  x31= ln~i  

x4i = In [ - I n  (1 - ~ i ) ]  

and new paramete r s  are 

A o = l n A  Ax = - E / R  A2 = n Aa = m A4 = p 

The p rob lem of  correct  specification o f  the kinetic te rm is conver ted to the 
p rob lem o f  judging part ial  l inearity between Yi and xj~ (j = 2 . . . .  4). Variables xji 

(j = 1 . . . .  4) are mutual ly  highly correlated.  In  pape r  [8] there is a survey of  methods  
for  graphical  es t imat ion o f  the part ial  dependence between y and x~ in cases o f  
multicollinearity.  
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Partial regression graphs belong to the simplest ones. Let us consider a linear 
regression model in the matrix form 

y = ~ A + e  (17) 

where y is an (N• 1) vector of dependent variables, A is an (mx 1) vector of  
regression constant, >~ is an (N x m) matrix of explanatory variables and e is an 
(Nx  1) vector of  random errors. 

Linear model (17) can be resolved to terms 

y = ~ t i j A * + x F + e  (18) 

Here ~ ol is matrix >~ without thejth column xj and A *, c are regression constants. 
By using projection matrix IPol = I E -  ~ o1(~ ~1 >~ ol]-1 ~ ~1 it is possible to 
rewrite Eq. (18) into a form 

IPti]Y = IPul ~ ol A * + IPtijx F + IPt~le (19) 

In view of the fact that IPtj ~ is a projection into a subspace orthogonal to the column 
of St/l, Eq. (19) can be simplified to the final relation 

u i = cvj+ IPtn~ (20) 

i I .  N 1  . 

| 

2 5  

3 ~  

m na 

Fig. la Partial regression graph for proving the correctness of the JMAYK model (partial dependence 
ofln al on 1/Ti) 
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Fig. lb  Partial regression graph for proving the correctness of the J M A Y K  model (partial dependence 
of In ~i on In (1 - cq)) 
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Fig. lc  Partial regression graph for proving the correctness of the J M A Y K  model (partial dependence 
of In ~i on In ( -  In (1 - cti)) 
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Fig. 2a Partial regression graph for proving the correctness of the SB model (partial dependence ofln ~i 
on l/Ti) 
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Fig. 25 Partial regression graph tbr proving the correctness of the SB model (partial dependence of In ~i 
on In ~i) 
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It follows from the theory of  linear regression that uj are residual of the regression y 
on columns ~ ul and vj are residuals of  the regression xj on columns of  ~ t Jl" By 
using mean value operator on Eq. (20) we easy find out that the dependence of  
residuals uj on residuals vj is linear with zero intercept and slope C --- Aj. This 
dependence is denoted the partial regression graph. The properties of  this graph are 
summarized in work [8]. 

For the purpose of  kinetic term selection it is important that for the partial linear 

dependence between y and xj the corresponding partial regression graph must be 
linear. Nonlinear trends on this graph clearly indicate the incorrectness of the model 
used. 

From data generated by the JMAYK model in our small simulation study the 
partial regression graphs corresponding to JMAYK model (d 2 = 1, A 3 = 0) are 
shown in Fig. 1 a, b, c and the partial regression graphs corresponding to SB model 
(.44 = 0) in Fig. 2a, b. 

It is evident that for correct JMAYK model atl the partial regression graphs are 
practically linear. For  incorrect SB model the partialregression graphs are strongly 
nonlinear. As it follows from this and our simulated experiments the partial 

regression graphs are sufficiently sensitive to using incorrect kinetic terms. '[hey are 
able to comprehend also the presence of  outliers and nonconstant error variance. 

Conclusion 

The modelling of  nonisothermal kinetic processes in thermal analysis is still 
rather an art than a serious science [3]. It is necessary to analyze experimental data 
with great care and to compare the adopted assumptions with reality. In this 
contribution only selected problems connected with nonisothermal kinetic data 
treatment are discussed. Other problems were open in the paper [1 I]. 
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Zusammenfassung - Ziel dieser Betrachtung ist, auf folgende Problemstellungen 
aufmerksam zu machen: 

(i) Randbedingungen in kinetischen ModeUen 
(ii) Verzerrung kinetischer Datcn dutch Abschneiden der Peakendcn 

(iii) Regressionsanalyse bei der Auswertung kinetischer Daten 

Pe3mble ~ l~ey[blo tlpeRcTaBaeHHOfi CTaTbH o6paTgTb BHHMaHHr Ha c~ielIy~omHe npo6.qeMbi: 

H) norpaHHqnble yc~IOaHS KHH~I'HtI~CKHX Mo~Ie~efi, HH)ncra~eHHe KHHeTHqeCKHX ~aHHbIX npa 

OTpC3aHHH KOHI[OB HHKOB, HHH)BBe~eHHC peFpeCCHOHHOFO aHay[H3a npH OHOHICC KHHeTHqeCKHX 

~aHHblX. 
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